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PROJECT SUMMARY

At the start of our work in June 1971, three
principal tasks were assigned. Slightly restated,
these tasks were:

(i) Develop a deterministic algorithm for
guidance to rendezvous with comets and asterolds
that can handle expected large target ephemeris
errors.

(1i) Define the problem of determination of
rotational state of a tumbling asteroid or cometary
nucleus and develop possible schemes for this
determination.

(1ii) Investigate possible contact rendezvous
schemes including the "harpcon" technigue.

During the first year, a detailed investigation
of a rendezvous guidance technigue based on
"encounter theory"” was conducted. The definition
and formulation of the tumbling problem was made
and several possible algorithms phrased. A first
investigation of the harpoon problem was conducted
and fregquencies and acceleration levels identified.

Early in the second year work, & successful
deterministic rendezvous guidance algorithm based
on optimal control theory was developed., The
algorithm was considered sufficiently important
that, with agreement of NASA, more emphasis was
placed on the rendezvous investigation. To
accommodate this work, the harpoon study wae set
aside. An effort was initiated on the rendezvous
navigation problem wherein measurements are made
and statistically processed onboard the spacecraft
to provide the reletive stgte information required

for input to the guidance algorithm. Expenditures
on the contract were low enough so that in June,
1972, a no-cost extension of the work to September,
1973, was poseible. At this time the changes in
obJective were formalized and principal tasks were
restated to include the navigation work {and elim-
inat§ the contact-rendezvous and harpoon investiga-
ticn).

In September, 1973, delays caused by installa-
tion of a new computing machine at the University
prevented generstion of final data. The contraet
completion date was again extended, at no cost,
to December 15, 1973, to allow time for this data
generation and report preparation,

The final report of our work is presented in
two volumes:

Part I, Guidence and Navigation Studies

Part II. Tumbling Problem Studies

Each of these volumes presents the technical
detrils of the anslyses conducted, the principal
conclusions made, and listing of the computer
programs employed, including descriptions of the
operation of the programs. Technical ebstrects of
the work are included in each velume. In Part I,
the body of the report reproduces a paper prepared
for the ATAA 10th Electric Propulsion Conference
entitled "Solar Electric Propulsion for Terminal
Flight to Rendezvous with Comets snd Astercids.”
(ATAA Paper No. 73-1062). The title was changed
for inelusion in this report and a few typograph-
ical errors were corrected.
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PART II.

Abstract

The problem of determining the rotational motion
of a tumbling celestial body of the astercid type
using spacecraft-acquired data is addressed. The
rotaticnal motion of the body is modeled by free-
Eulerian motiom of a triaxial, rigid body and its
translational motion with respect to a nonrotating,
observing spacecraft, which 1s not thrusting, is
assumed to be uniform during the time observations
are made., The mathematical details which form the
basis for a digital simulation of the motion and
observations are presented. Twe algorithms for
determining the motion from observations for the
specigl case of uniform rotaticnal moticn are
glven. Results of studies of the performance of
the algorithms using ideal data and "non-ideal"
data are discussed. The Maon-ideal" data is
generated by inducing iritial conditions which
cause the body to "wobble" in general free-
Fulerien motion. One algorithm performs satisfac-
torily when the rotational motion of the body is
truly uniform, but, in general, falls to determine
realistie values of the constants which are deter-
mined when the rotaticnal motion is not uniform.
The other algorithm does not perform well.

I, Introduction

Future missions to the asteroid belt or a comet
using autonomous snd/or semi-autonomous spacecraft
of the CARD (Comet and Asteroid Rendezvous and
Docking) type will foreseeably require the space-
craft to land on, or "doek" with, the tumbling
target boedy. The successful completicn of such a
task will depend to e large extent on the avail-
sble knowledge concerning the target's rotational
motion and its transletional motionh relative to the
rendezvous spacecraft, Such knowledge, if not
available a priori, must be determined in some
manner using observations of the motion of the tar-
get body made by sensors onboard the spacecraft.
Thus, methods for determining the rotational and
relative translaticnal motioms of the target need
to be developed. The development of such methods,
or algorithms, 1s the subjlect of this report.

A prerequisite of any motion‘determination al-
gorithm, such as, for example, a satellite orbit
determination aigorithm, is the formulation of &
suitsble mathematical model for the motion which is
to be determined. That is, the motlon to be
gtudied must be defined in physical terms and then
described mathematically. The motion of interest
here is that embodied in what we call "the tumbling
problem.” The definition of this problem is given
the following section. Stated briefly, the motion
consists of free-Fulerian motion of the target body
about its center of mass and uniform translational

TUMBLING PROBLEM STUDIES

motion of the body's center of mass with respect to
the center of mass of a nonrotating, observing
spacecraft., Buch motion cen be described exactly
in mathematical terms snd the motion determination
problem is reduced to the determination of the
"oonstants of the motion" which are the arbitrary
constants obtained in integrating the equaticns of
motion of the system.

Since the type of motion to be considered cannot
be easily simulsted physically, the mathematical
model of the motion is useful not only in deriving
the determinstion algorithms, but also in simulat-
ing the motion digitaily to check the performance
of the algorithms. Such a simulation capabllity
was developed and utilized in this study and is
discussed in the third seetion of this report.

The form of an algorithm for determining the
constants of the motion depends, tc a large degree,
on the type of observational data avallable. In
the fourth section of this document, two algorithms
for determining these constants for the special
case of uniform rotational motion {which will
"orobably" be the type of motion actuslly encoun-
tered) are deseribed. The first algorithm,DUMRA
(Determination of the Uniform Motion using Range
and Angles)}, utilizes position éata for three
particular points on the surface of the target body
at three instants of time, This data could be ac-
quired by using the combination of (1) a scanning
radar from which remge and angles for many points
on the body could be obtained, (2) a television
cemera, and (3) an earthbound observer. The
cbserver would be used to identify the same three
points on the body at the three instants of time
and select the data for these points from among all
that scquired {using, for example, a grided CRT
display and & light pen).

The second algorithm utilizes simpler data. The
data is range and range-rate data, also acquired
vis rader, for cne specific point on the body av
six instants of time, again with the aid of an
cbserver to ldentify the point.

The performance of the algerithms was tested, as
indicated previously, by simuleting the motion of
the body and from this motion determining the
obaervations required for the algorithms. The
gsection following the description of the algorithms
is devoted %o e discussion of these performance
studies.

Conclusions drawn from the work conducted are
presented at the close of the report and an
Appendix containing informaticn on the computer
programs written and used during the study is alsco
included.



TI. Tumbling Problem Definition the body needed to predict its relative
position and its orientation at any time

A prerequisite to the development of algorithms in the future.
for determining the rotational state of a tumbling
body, such as an asteroid, is the selection of This is the problem we have addressed in this
suitable mathematical models for the body and its study. For the most part, however, it has been
moticn. Since the type of body of interest is an simplified by assuming uniform roteticn as well as
asteroid or a comet nucleus, it is reasonsble to uniform relative translation. In the next section
assume that the body is a rigid one. Also, using we consider the problem of simulating the observ-
svailable datall) on the shape of asteroids, a ations which a spacecraft might make.

triaxial, homogeneous, ellipsoidal, rigid body was
selected as the physical model for the tumbling

body. Of course, it is not suggested that any ITI. Simulation of Observations
asteroid is sctually perfectly homogeneous, nor
that they all are ellipsoidal, but the shape Although the elgorithms for determining the
gppears reasonable and the torque-free rotational tumbling body motion which are descrived in the
dynemics of any rigid body can be taken as those of next section are predicated on the assumptions of
a body with & triaxial inertis ellipsoid. Our uni form transiational snd uniform rotstional
physical ellipsoid is the reciprocal of the cor- motions, simulation capability to handle ronuni form
responding inertia ellipsoid and the lengths of its free-Eulerian motion of the triaxial body was de=-
axes are denoted by =, b, and c where a > b > C. veloped. Such capability mey be useful in future
- studies and may alsc be used, as it was here, to
On the basis of cbservations of fluctuations of study the effects of small variations in the rota-
of light reflected by asteroids, astronomers (2) tional moticn on the uniform motion algorithms’
have concluded that they rotate unifermly, or at performence. Details of how the observations of
least almost uniformly, about thelr centers of mass. points on the surface of the gllipsoidal model
Furthermore, the well-known fact that dissipation are generated using a FORTRAN aybroutine, STATE
of rotational kinetic energy (intermally, or (see Appendix for listing) are given in what
through external means such as meteor impacts, with follows.

no significant change in rotational angular momen-
tum will cause s triaxial body to ultimately rotate Fhysical Model
uniformly asbout its sxis of maximum moment of

inertis leads us to assume uniform, or slmost uni- The tumbling body model discussed in the pre-
form, rotational motion of the tumbling body about vious section is depicted in Figure 1. As stated,
its axis of maximum moment of inertia. To allaw the model is a triaxiasl, rigid, homogeneous

for nonuniform motion, we have adopted & free- ellipsoid with axes of length &, b and ¢ (a>b>c)

Bulerian dynamical model for the tumbling motion;
that is, the rotational motion is assumed to be
torque-free dwring the time of observation.

The relative motion of the spacecraft and the
tumbling body centers of mass may be very nonuni-
form during the use of high thrust chemical systems.
However, we assume that during the time that obser-
vetions of the tumbling beody are made the space-
craft's high thrust system will not be operating.
Of course, relative accelerations of the tumbling
body =and the spacecraft may still oceur due to
(1) the body's gravitational etiraction, (2) the
use of the spacecraft's low thrust system, and
{3) the gravity-gradieant effect of the sun's
gravitational Tield. However, vy =ssuming a sta-
tion keeping or a steady fly-by mode of operation
for the spececraft, the relative acceleration
caused by the low thrust system should be small
enough to be neglected over a period of time of
several minutes and the same should be true of
the acceleraticn due to the body's gravitational
attraction and alsc that due to the sun. Hence, it
iz mssumed that the relative motion is uniform.

The tumbling problem, as we have defined it,
may thus be stated as follows:

Using observations of the motion of a free,
homogeneous , triaxial, rigid ellipsoid made
from a reference point which is moving wmi-
formly relative to the ellipsoid's center
of mass, determine the motion of the ellip- Fig. 1
soidy i.e., determine the constants of the ’
motion and the physical characteristics of

Tumbling r'rotlem Ceometry



s¢ that the moment of inertia sbout the z-axis

(see Figure 1) is meximum. The moments of inertia
sbout the exes x, ¥y, and z are denoted by A, B,
and C, respectively, and, as is obvicus, C » B > A,
in genersl.? For a homogenecus, triaxial ellip-

soid we have,

A= (n/5)(b% + c2)
B = (m/5){a% + c?) {1)
= {m/5){a2 + b2} ,
where m is the mass of the ellipsoid, As we shall

see, the mass of the ellipsoid does ncot affect its
rotational motion as long as there are no external

torques,

Rotational Motion

Let styszs be an orthogonal, dextral, coordi-
nate system which has its origin, 5, at the center
of mass of the spacecraft and which is nonrctating.
Let CXYZ be a similar system which has its origin
at €, the center of mass of the tumbling body and
which is aligned with the styszs system. Also,
let CxHszH denote a similar system which has its

z —axis aligned with the constant rotational

H
angular momentum vector, H, of the tumbling body

Y
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Fig. 2. Coordinate Systems,

as shown in Figure 2. The orientation of the
Cxyyyey system is defined by the angles iy and By.
Finally, let the Cxyz system, shown in Figure 2, be
a principsl, body-fixed coordinate system for the
ellipsoid. The orientation ¢f the Cxyz system with
respect to the Cxgyyzy is defined by the set of
Eulerian sngies {y, ©, 4¢}.

The rotational motion of the ellipsoid is
governed by Buler's equations for a free triaxial
rigid body, which may be written in the forms,

Ao + (c-B) mywz =0

B + (A-C) ww_ =0 (2)
v Z X

c&z + (B-A) e =0,

vhere wy, and w, are the x-, y- and z-components,
respectively, of w, the angular velocity of the

ellipsoid.

Since Eqs. (2) are homogeneous, we can and shall
divide each of them by & constant faector. In
mddition, we shall introduce a new independent
variable,

T=e, b, (3)
(e
where sz is the value of wy at £ = 0, Letiing
()* = a{}/datr, we may then rewrite Egs. (2} in the
dimensionless forms,
1 — =
LA (1-5,) AyAz 0
r - =
A gt (ol 1) A =0 (4)
' - =
X .t (52 Ul) lxly 0
where Ax=mx/mz . Ay=my/wz . lz=wz/wz > 9, = A/C
° o 0
and 0, = B/C.
Eguations (4) have the first integrals,
n2 = 0. 23 2 +¢.22 2 + 2 2 = constant {5)
1 'x 2y z
and
= 2 2 2y -
o= (cllx + UEAY + A, ) = constant, (6}
where h = |H|/C2 wzz end o is twice the rotational
o

kinetic energy of the body divided by c? wzz. The
a

integrals (5) and (6) may be used to obtain the
following solution{3) t¢ Igs. (4):

lx =pecnu

A=

y S asnu (T)_
Az srdnu,



where
p = (a - 12)/[0,(1-0)) )} (8)
q = ((a - n2)/[5,(1-0,)1)" (9)
r= i(n2 = oyw)/(1-0)) 1} (10)
4= At -~ v, v = constant, {11}

A= (o, - o) (aeb2)/[(1o0,) (n2-0 @) 1% (22)

and the functions en u, sn u and dn u are Jacoblen
elliptiec functions of modulus

k = {[{o,0,) (a-h2)1/[(1-0,)(n20 a} 1% | (13)

Note that, since 0] and 0p do not contain the mass,
m, of the body, the rotational motion of the Dody
is not affected by the value of m, but is affected
by the gistribution of the mass. -

To ellow for arbitrary initial conditions on

Ax and A, (initially Az = 1, of course}, the
elliptic’ functions are rewritten in the forms , (%)

en w=ch (A-v) = en 2t cn v +
sn At sn v dn At dn v)/A

an u=sn {A-v} = {sn At en v dn v -

{1k} |
sn v on At dn At)/A
dn u = an (At-vw) = (An At dn v +
k2 sn A oon At sn v oon v)/fA o,
where
A =1 -k sn? At sn? v, {15}
Since st £ = 0, ecn u=cn ¥, sn u = - sn v and
dn u = dn v, we have from Egs. {7
en v o= Ax /p
©
sn v=2Xxr /fa {16}
Ya
an v = 1/r .

Thus, the solutions for Ay, AY and A, may be ex-
pressed as

A, = (lxo en it - xyo p/{ar} dn At sn At)/4
A (Axo q/{pr) sn At + Ayo en At dn At}/a {1T)
A= %2 /{pg)] sn At en At)/B

(dn At - [Ax A
OYO

where A = 1 -~ (k2 Ayozfqz) sn? At. TFor use in

Eqs. (16}, p, 94, r, A and k are to be obtained by
evaluating Egs. (§)-(10), {12) =nd (13} at t=0
using Egs. (5) and {6).

The angles 9 and ¢ may be expressed As functiong
of time by using the fact that H may be wvritten as

H= Au i+ Bmyj + Cw k (18)
or asd
H=- H sin @ E + H sin ¢ cos § 3 +
H cos ¢ cos © ﬁ, (19)

where {{, §, K} is & set of unit vectors associated

with the Cxyz system end E = lﬁi. From Fgs. (18)

and (19) end previous definitidns, it follows that
sin & =

- lex/h {20)

and

tan ¢ cglyllz . (21)

Bxpressing the angle § as a function of time is
a more difficult task. Although it is well known{3)
that | may be expressed as a linear function of
time plus & periodie functicn of time composed of
Jacobi's Theta functions, this was not done. TIn-
gtead, | is caiculated by integrating the follow-
ing differential equation:

' =n [1 +(a,-1) sin? ¢]. (22)
Note that if the rotaticnal motion is uniform,

$ =0 sand ¢ = w0+h1. In the simulation program, a
check is made 0 determine if the motion is uniform,
and if so, the integration of Eq. {22) is by-passed
and the orientstion at the desired "time," 71, is
computed using @ = ¢ = 0 and ¥ = wo + hrt.

The transformation from & nenrotating set of
unit vectors {I, J, K} directed along the positive
¥5-, ¥g—- end zg-axes, respectively, to the set of
unit vectors {{ §,&} is

IRt =07, (23)

where a superscript T denotes the transpose and

1 0 0O c8 0 -s8 oy s O
ﬁ =10 chbad ({0 1 O =s¥ cy O
0 -5 céd 38 0 c8 c 0 1
cdy O -sB i cly sy, 0 {24)
x Q 1 u] —S¢H cwH 0
s6. 0 chb 0o 0 1

In Eq. (24), ¢ denctes the cosine and s denoctes the
sine of the angle prefixed by such letter. Since

¥, and Ay are constant angles which specify the
orientation of H, they ccnstitute two of the con-



stants of the motion., The other constantstare

Ul’ O Ax R Ay Uy and wo' Thus, we see that
o a o

eight constants are needed to completely specify

the free-Eulerian rotational motion of a particular

body.

Translational Motion

The model adopted for the relative moticn of the
centers of mass of the body and the spacecraft is
exceedingly simple. We assume that this motion is
uniform so that the vector R from the point S to C
is given by -

R=3 +Vt, (25)
where
Ro=X,f+¥, &+2, K= constant vector
and

V= XI+¥F+2K= constant vector,

are the relative position and velocity vectors at
t = 0. The constant components of R_and V are
six constants which Getermine the réfative trans-
Jational motlon.

Motion of s Point on the Body

The determination algoritims discussed in the
next section are predicated on the use of observa-
tions of the movements of specific points on the
surface of the tumbling body. If we let Ty be a
vector from C to a point, Py, on the surface of the
body and pjy be a vector from 5 to Pj (see Figure 1)
then we have, very simply,

gy = B*r, . (26)

Fig. 3.

and o

t Actually, oy 5

are physical parameters.

Geometry for Visibility Determination.

The vectors ry emd oy may be expressed in the
vector forms,

Ty =X ity itk (27}
and
=g, fT+n, d+c, K, (28)
S R
so that in metrix form,
2 X * *)
. T
nj = Y + y 1t + é yj (29)
Cj Z % Zj
and
: X
EJ X3
Ao =tV e ata Jy {30)
J = = 'j 3
: Z
) %)
where
0 =X A
Z h
L=, Az Q —Ax . {31)
o
-l A D
Y X

Equations (29) and (31) are used in subroutine,
STATE, to generate the {elative position, pj.

end relative velocity, g3, of three points, Fj,
j=1,2,3, on the surface of the ellipsoid. The
range, 0j, and range-rate, 5J, for each point are
glso determined from

]

1
2 2 247 {32)
Py (Ej ot cj )

Py =8y D_J/PJ‘ (33)
respectively.

As stated abeve, the points Py are "on the
surface"” of the ellipsoid. This constraint is
satisfied by allowing one to input only the x-
and y-components of rj and determining the =-
component from

1
zy = e (1-xp/e? -y 207 (3m)
vhere a, b and ¢ are to be provided and x; and Y3
are constrained by the relations x3 < a, y3 < b,

1 - ij/az - yj2/b2 > 0. Hote that we have assumed
that the points are all "on the bottom" {i.e.,
z > 0) of the ellipsoid.

Observability of & Point on the Ellipsoid

Clearly, a point Py, on the ellipsecid will not,
in general, be visitle from a point 8 at all
times. To determine whether or not P, is wisible,
it is sufficient to find the twe (in general}
intersections of the line of gight,Lj, which is
colinear with ps, with the ellipscid (see Figure 3)



and determine if the point, Pé, is the near point
of intersection., Such a determination is made in

subroutines STATE and VISIB in the fellowing manner.

~

The compenents of the vector, py, in the (i,3,6}
basis are determined using

A r -
%) 5
AL .
$oyp = & $npp (35)
A
°) ¢
. L, N s

and the direction cosines, QAJ, mAJ and nAJ, of LJ

are determined using the equations,

A
L. =85
AJ 3R
A
n, =n. /p (36)
A : 3 M
_ A
nAJ =&y /pJ

%
The coordinates Xy, yz and z; of the "other"

point of intersection of Lj with the ellipsoid must
satisty the equations,

(x4 - xj)/EAJ= (v} - vyl/my = (2} - 24)/n, (37)
and
1= (x:].'/a)2 + {ygfb)z + (zH/c)z. {38)
The solution of Egqs. (37) aﬁd (38) ist
xg =2 celcl - xJ
vy = (mAJ_/EAJ)(xg - xj) + ¥y {39)
zg = (nA /lA )(xg - xj} * 2y
J
where
e. = 8 2/8%7 + m 2/0% 4 n, 2/c2
1 A Aj : AJ {(4%0)
e = (e, - 8,2/82) %, = m y. /% - n /cz
2 1 Aj J AJ Aj 3 AJ Aj

% 0 the second apd third of
J

Egs. (39) appear to be singular. This singularity
is, however, only "apparent," since

We note that if 2

lim (x*-x,) ‘EEYJ{m /6?) + 25 (n /CZ)]
Lo % - 2 2.2
AJ [mAj/b +nAj/c ] (h1)

T A quadratie equation in x% may be cbtained.

tirst of Eqs. (39) may bed

Using the coordinates (xg, ys, 23) the distance,

03, may be computed and if pg > pJ, the point, PJ’
the point, Pj’ ig on
the "backside" of the ellipsoid end cannot be
cbserved.

is visible, but if |:\‘j > Pg,

In summary, the motions of three points on the
ellipsoid are simulated digitally in subroutine,
STATE, which utilizes Egs. {29) and {30) {and all
equations needed to evaluate those equations).
Values of a8, b and c, a5 well as Bo’ v, BH, wH’
wo=w, (A i+ A, S k), %y 3=1,2,3,

=] 0 o
must be supplied to STATE by the user. As the
ellipsoid rotetes and translates, the visiblility
of the cheosen points is checked by using Egs. (39),
(32) and (29). If the point, Py, is not visible,
a message to that effect is printed, but, since
subroutine, STATE, was used only to check out thes
motion determination algorithms, the data request-
ed by the algorithms is still supplied. In future
simulation work, however, the visibility provision
should be used to make the simulation more real-
istic by "cutting off" data from an uncbservable
point. :

and y.
YJa

V. Algorithms for the Case of Uniform Moticn

Becruse asteroids and cometary nuclei may
logically be expected to be rotating uniformly and
because the exact sclution tc the free-Eulerian
motion problem is much more complex if the motion
is not uwniform, algorithms for determining the
eleven constants, d, 8, o = lal, x, ¥, 2, X,

YQ, Z_ , %, and ¥y were developed., For the uniform

o 1
motion case,¢., and B, determine the orientation of
the target's angular veloeity vector w, which is,
of course, colinesr with its rotational angular
momentum vector, H, and © is the mapgnityde of the
angular velocity. The constants ¥, Y, 2, Ko T
and Z, determine the translational motion of a
point, C, on the spin axis of the target and x) and
¥y locate a point, P1, with respect to C. The z-
coordinate of P; is not determined, since the loca-
tion of the center of mass ¢f the target on the z-
axis cannot be found if it does not "wobble."
That is, if the motion is uniform, all peinis on
the axis of rotaticon move in the same nmanner as
the center of mass and hence are not distinguish-
gble from it. This fact is taken intoc account by
setting z; = 0. Furthermore, sinee the orientation
of the Cxyz system in the asteroid is immaterial if
the motion is uniform, ¢ can be set equal to zero
also.

=]

Two distinct elgorithms were developed for the
uniform motion case. The first is called DUMRA
(Determination of the Uniferm Motion using Range
and Angles). This algorithm is presently set up
to accept position vectors, which it is assumed
may be obtained from range-and-angle data for three
specific points on the target's surface. The
second algorithm is called DUMRER (Determination
of the Uniform Motion using Range and Range- Rate)
This algorlthm utilizes range and range-rate “data

One root of this equation is obviously x,, so that, the
obtained by factoring the quadratic. J :



for one point on the target's surface along with
e€stimates of the eleven constants tc be determined
and iteratively produces more exsct values for the
constants. More detailed descriptions of these

:lgcrithms are given in the remainder of this sec-
ion.

AMpgorithm DUMRA

The sclution procedure utilizing position data
is as follows:

1. Obtain position vectors, py, j=1,2,3, for
three distinet,non-colinear points, P,, j=1,2,3,
cn the surface of the target at three'times, tJ,
J=1,2,3, such that tp - t] = tq - tp = At.

2. Compute approximate velocity vectors for
each point at time, to, using

gJ(tE) = [gJ(t3) - _p_j(tl)]feﬁt, j=1,2,3. {42)

3. 5Compute the anguler veloecity of the body, w,
using(

o.(t,) = o (6,00 x [6,(t,) - 6,(t,)]
we 232 T SRS A L IO

[540t) - (5,001 - [p,(t,) = o (5,)]
s0 that in matrix form,
_ T
w = [wl wy wal® | (Lk)
4, Compute ¥y, and &, using
Yy = ten™t wy/u ) | (b5)
end
By = tan~1 { fl—coszeﬁfcoseH), (L&)
where
cos 8, = msflfl . (1)

5. Compute x. and ¥pe First, compute

1.
ap, = gl(t3) -2 El(tz) + gl(tl) (48}

in the matrix form 3

1
T T T T
boy = A3 Ay [A7(6,) —2 1+ 270t )] vy . (B9)
0
vwhere cut st ¢
4, (t) = wt  cwt 0 (50)
0 o 1
I =3 x 3 identity matrix, {51)
fedy 0 -s8,7
4, = ¢ 1 ¢ s (52)
59 0 cfy |
cwH st OT
‘_3_3 = -SlIJH C'PH 0 > (53}
0 o 1

and t» has been arbitrarily set equal to zero.
Equation (k8) may be solved for xy and y;, viz.,

[2(cutt - 1)L 0 0

= A H Ap .
v 0 [2(cunt - 1)]-1 of 223 81

*

{5k4)

6. Compute R(tz) =R . This may be done using

the equation

= p, () - ég v s . (59)

=

T. Compute YO from the equation,

Y, = lelsy) = 3, - 85 8 £06) {vy 0 1o

{56}

The requisite constants are given by Egs.
(43), (453, (L&), (54}, (55} and (56). Note that
te extract the coordinates x; and yj, it was
necessary to allow for the curvature of the motion
of Py due to rotationm.

Algorithm DUMRRE

The solution procedure based on the use of range
and range-rate data is an iterative one. The main
steps are as follows:

1. Guess values for the eleven unknowns, wH’
GH, Wy XO, Yn’ Zo, X, Y, &, xy and Yy

2, Set ¢ =0 8t t =20 and compute, for six
times t, > 0,

J
ple = (BT R+ 2 _T dr EE nle (5T)
and
Gupde = (G B+E 8T dr + 008 1),
(58)
where the subseript e denctes an estimated value,
0 -w 0
w= |lw 0 0 (59)
) o 0
e
and =T = gg =g ég .

3. Use the obsgervations pl = |El| and pl=El/pl

at the same times, tj’ and the estimated values to
cbtain

o, - p _
R S (60)

P10y - (plpl)e

at each time, t,, j=1,2,...,6,

J



L, Evaiuate the partial derivative matrix,

=]
o
-
|
|

_ T
where X = (wH By w X, Ty Z,XY 2% yl) , abt each
time, tJ, J=1,2,...,6.

5. TForm the augmented matrices,

5 (6) )
T,
B = A (62)
H (és)
AN
1
| (5 et
and
T oo o .
c= oz (tl);gz_“(te);...:gthtB);(al-ple)tztsz
(63)
&. Invert B and compute
(64)

px =g CCp s

where Cf

be varied to improve convergence.

is a convergence factor (C, < 1) vhieh mey

7. Find a new estimate of x using

i+l i
SR VI (65)
8. Check the norm, || g_[i, to see if 1t is suf-
ficiently small. If it is, go to 10.

9. To decrease |l EL[|, compute a new partiasl
derivative matrix B and a new matrix C using the
current estimates and repeat steps & Through 8.

10. The elements of xel+l
values of the constants.

are the desired

The matrix B in Eq. (62) is such that some of it
its terms are much larger than others. Therefore,
+o increasse numerical aceuracy in cbtaining the
inverse of B, dimensionless variables are used in
the computer subroutine DERIV in which the matrices
g(tj) are computed.

It should be noted that the method of soluticn
ueed in this algorithm is of the "batch processor”
type. Another method for solving such non-linear
abservation equations as Egqs. (57) and (58) is to
use the pseudo-inverse, - -

p= o, (66)

and compute Ax from the equation,

A = D H b3, (67)

3

at successive instants of time, correcting the
estimate, xa,each time. This method of solution was
attempted initially when there were still errors in
the program. Since it appeared that the matrix

H TH was ill-conditioned, the pseudo-inverse method
2 s mpandoned in favor of the more cumbersome, but
more trustworthy, "batch-processor” method outlined
here.

VI. Performance of the Algorithms

The algorithms, DUMRA and TUMRRR, were tested
using the simulation capability provided by sub-
routine, STATE, (and subsidiary subroutines). They
were not exercised as much as was desired because
of time constraints, but whether they operate satis—
factorily in the uniform motion cases considered is
evident from the results discussed in this secticn.
Nonuniform motion due to target body "wobble" is
another matter and is also discussed infra.

To test the performance of the algorithms,
values of the physical parameters a, b and ¢
thought to be .typical of an asterold were chosen.
These velues are given in Table 1 slong with
values of the nine constants of the motion and the

TAELE 1
PHYSICAL PARAMETERS AND CONSTANTS OF THE MOTION

a=1.75 x 10" m w = 3.31 x 10=* rad/sec
b=80x103m o, = 20°
e=35x10%m Py = 10°
X, = - 1.0 x 108 m n=1.0 m/see
Yo = 0.0 v = .5 mfsec
Z0 = 0.0 . w = .5 mfsec
= - L =
*y 1.75 x 10" m ¥q 0.0
x, = - 1.0 x 10% m ¥, = 6.5652 x 10 m
= - 1. Y = o.
x3 1.0x 10" m y3 0.0

x- and y-coordinates of three points ¢n the body.
The z-coordinates of these points are determined
in STATE as indicated ftreviously. The velues of
the eonstants which are listed constitute only cne
of seversl .sets of values used during the check-
out process and hence are "typical."

The first step in the check-out of each of the
two algorithms was to test its =sccuracy under
idenl conditions represented by perfectly uniform
motion. The performance of each algorithm when
the gimuleted motion was not uniform was then
tested.



For perfectly uniform motion, slgerithm, DUMRA,
reproduced the input in most cases to four signif-
icant figures and always attained percent errors
less than 1 percent. Thecretically, the only error
which is present (apart from basic computational
errors, that is, is that due to the approximate
calculation of the velocity of esach of the points
from the position data., This error does nct appear
sufficiently large to be a problem if the increment
in time, At, is small compared to the rotational
period of the target. 1In the cases examined here,
w = 3.31 x 10~% rad/sec, so that the period of
rotation is 1.9 x 10 sec = 5.28 hrs. TFor these
numerical values, At = 90 sec., gave satisfactory
results.

When nonuniformity of the rotational motion was
intreduced by giving wyx  eand/or w, non-zero values,
the effect on algorithm DUMRA was Snomalous when the
maximum value of the angle, @ = cos~l(cos 8 cos &),
between the rotational angular momentum vector and
the angular velocity vector was greater than a few
degrees. The algorithm extracted fairly accurate
(within 10 percent) values for the components of R
and ¥V, at times, but falled as often as it was suc-
cessful. The reason for this behavior has not been
determined at this time, but appears to be connected
with the use of the position vectors to calculate
velocity wvectors.

The performance of algorithm, DUMRRR, was not
satisfactory. In the runs made, the use cf the
algorithm usually resulted in the reduction of
square root of the sum of the squares of the ele~
ments of the matrix, ¢, but this reduction did not
lead to consistent improvements In all the constants
which must be determined. The errors in R, were,
for example, reduced by applying the elgorithm, but
those in ¥, and r, in genersl were net., In.gs few
cases, application of the algorithm resulted in
progressively smaller values of Ilg for several
iterations, but continued spplications resuited in
divergence.

Attempis were made to improve the convergence
properties of the algorithm by vaerying the conver-
gence factor, Cp. An initial wvalne of 0.02 was
given to Cy and this velue incressed to 0.1 and 1.0
when convergence criterion was reduced to 10=% and
10'6, respectively. These efforts were nct suc-
cessful.

Bince the algorithm, DUMRRR, did not perform
satisfactorily when confronted with uniform motion,
tests with nonuniform rotational motion were not
conducted.

Conelusions and Recommendaticns

In summary, the capability for simulating the
motion of an asterolidal-type bedy and observaticns
of points on such s body has been developed. The
rotational motion similated may be general free-
Fulerian or uniform, while the translational motien
is uniform. This simulation capability has been
used to test two algorithms for determining the
constants of the motion from simulated observations
when the rotational motion is uniform.

The slgorithm, DUMRA, performed the job for
which it was designed sstisfactorily. However,
when required to work in the presence of "noise"
caused by nonuniform rotational moticn, the algo-

rithm produced erronecus results. Failure of the
algorithm for large nutation angles (angle ®) was
expected, but even small sngles unexpectedly caused
a great deal of trouble. Because, small nutaticon
angles mey actualiy be encountered, the algorithm
should be modified to sllow for such an eventuality.
This coutd be done by using the angular velocity
determinetion portion of the algorithm with a small
At to obtain five values of w. An approximste
solution which mliows for small nutation angles {see
Ref. 5, Appendix D) could then be used to obtain
Wy s Wy 5 Wy, 0] Bad On. Minor changes in DUMRA
wolld ¥ﬂen allow the center of mess locetion and
motion to be determined.

The work on algorithm, DUMRRR, based on the use
of range and range-rate data, although not success-
ful, shouwld not be considered to have been fruit-
less. The failure of this algerithm reinfeorced an
intuitive helief that more information than just
range and range-rate data are needed tc determine
the motion. In particular, it appears that angular
data is necessary to adegquately define the plane of
rotation of the vector p; and hence the direction
of w. It wae hoped that the requirement for such
data could be eliminated by having very good esti=-
mates of the angles yy and 8y, but this does not
seem to be the case,

An important aspect of this study 1s that an
observer was assumed to be awvailsble for the
purpose of identifying points and selecting data.
Totally autonomous operation of course precludes
the use of such an observer. Thus, some type of
autometic identification technique should be de-
veloped if a totally autonomous determinetion of
the target body's motion is a requirement of
actual missicons.
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APPENDIX - COMPUTER PROGRAMS

General Program Descriptions

The DUMRA and DUMRRR programs are written in
FORTRAN IV and executed on the IBM 370/155. The
programs are research tools, not developed produc-
tion routines. The steps in the similation,and the
names of the subroutines used,are briefly as
follows.

DUMRA

Values of time, T, and the time increment, DT,
are input to subroutine, MATN, which ealls sub-
routine, DUMRA, which calls subroutine, STATE, at
times, T1=T, T2=T + DT and T3=T + 2¥DI. STATE
receives input from subroutine, DATA, the first
time it iz called and produces the position vector
sets, RL (I,F), R2 (I,J}, R3 (1,J), T =1,3,J0=1,
3, for times, T1, T2 and T3, respectively, Here, I
is the coordinate index; i.e., I =1, 2 or 3 im-
plies the x-, y- or z-coordinate, respectively, of
a point, Pj. The integer J is the number of the
point. The position vector sets are used to de-
termine the constants of the motion. In both STATE
and DUMRA matrix algebra subroutines are used to
perform the necessary calculaticns. Bubroutine
STATE, also calls DJELF and DCELL during the simu-
lation process.

DUMRER

The MAIN subroutine of this program executes the
DUMRER algerithm described in the body of this
report. Subroutine, MAIN, accepts a time, T,

a time increment, DT, and estimates of the con-
stants of the motion., It calls subroutine, RHOES,
which in turn calls STATE and computes a gifference
matrix DZ {1,1), T = 1,2, formed from the d4iffer-
ences in the actual range, RHO, and range times
range-rate, and the estimated values of range, ROE,
and range times range-rate, RORODE, respectively,
for the times at which it is called. Bubroutine,
DERIV, is also called from MAIN for each of the

six times necessary and computes the matrix H{I,J),
I=1,2,...,11, J = 1,2 of partial derivatives of

the observations with respect to the constants being

determined. Matrix algebra subroutines are called
from MAIN, RHOES, STATE and DERIV as needed. The
cbgervations are stacked in an 11 x 1 wvector,
¢{1,1), and the partial derivatives are stacked in
the 11 x 11 matrix,B(I,J). Increments in the
constants of the meotion are calculated as an 11 x 1
vector, DX(I,1}, and new estimates obbained. The
algorithm is repeatedly executed until the norm

of the differences in the actual and estimated
observations is "sufficiently" small.

Subroutine Names and DescriptionsT

DUMRA

MATN Controls execution and reads in T and DT.

TSubroutines arc used in both DUMRA snd DUMRER.

10

STATE

DUMRA

MATMUL

TILDE

DOTPRO

DATA

VISIB

DJELF

CELI

DUMRRR

MAIN

STATE

RHOES

TOTPR
TRPOSE
TILDE
MATMUL
DATA
A3TIMS
DJELF

DECL1

Simulates the free-Eulerian Rotationsl
motion and the uniform transiational
variation, produces cbservational data
and checks the visibility cof the cb-
served points.

Determines the eleven constants, PSIK,
THETAH, WW, BD, Eo’ Xy and ¥y

Matrix multiplication subroutine.
Matrix algebra subroutine which forms
8 skew—symmetric,3 ¥ 3 matrix from a
3 x 1 matrix (vector) for computation
of 8 cross~product.

Matrix algebra subroutine which forms
the dot product of twoe vectors.

Reads in data needed in STATE.
Checks dsta from STATE and prints out a
message if any of the three points being

cbserved is(are) not visible.

Computes the Jacobian ellipiic functions
snu, cnu and dnu.

Computes the complete elliptic integral
of the first kind of modulus k.

Entries are indicated in the flowchart
in Figure A-1.

Controls execution and exegutes the =al-
gorithm, DUMRER.

Same as for DUMRA except for minor
modifications.

Computes the difference Az in the actual
and estimated observations.

Same as for DUMRA.
Transposes an input matrix.
See¢ DUMRA above.

See DUMEA ambove,

Reads in actual data.
Inverts matrix B,

See DUMRA above .

See DUMRA above.

Entries mre indicated in the flewchart .
in Figure A-2.



MAIN

L

DUMRA
Calculates the constents of the

motion from observetional data.

L

| STATE

Simulates observations.

VISIB
Prints a message sbout
the visibility of the

observed points.

L

DATA

Obtains and stores

values used in STATE.

'DCEL 1°

Calcuiates‘complete

© |e11iptic integral

DJELF
Computes the three

Jacoblan elliptie

funetions SN, CN

| of the first kind.

and DN.

SUBSIDIARY

MATRIX CPERATION

*
SUBROUTINES

#Cg]led from DUMERA and STATE.

. Fig. A-1. Simplified Flowchart for DUMRA

MAIN

Controls execution and contains

DUMRRR‘algorithm.

RHOES

Computes differences in actual apd

estimated observations.

Y

Simulates actual

gbservations,

STATE

Obtains and stores actual

Lvelues used in STATE.

DATA

DERIV
Computes partial deriva-
tives of cobservation

w.r.t. constants of

the motion

[

SUBSTDIARY

MATRIX CPERATION

SUBROUTINES

Fig. A-2. Simplified Flowechart for DUMRRR
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Card
Variable Names and Definitions ¥o. Information on Card

The most important variasbles in regard to INPUT '3 Actual Values of: ¢H(cc 1-16), X(ec 17-32),
and QUTPUT are defined in the sections which . .
follow.. Other variable names are defined through- Y(ee 33-L8), 2(ce h9-6h), XO(CC 65-60)
out this appendix.

7 Actusl Values of: Yo(cc 1-16), Zo(cc 17-32),
xl(cc 33-L18). yl(cc 4g-64), xa(cc 65-80)
Input Data
: 8 Actual Velues of': ye(cc 1-16), x3(cc 17-32) .,
- The data which must be provided as input to
programs DUMRA and DUMRRR is described below. ALl ylec 33-48)
field specifications are F16.0 and the card )
column in which a particular piece of data must be 9 Physical Parameters: afce 1-16), blec 17-32),
located are indicated by numbers in parentheses clee 33-48})
following the mathematical symbol for the piece of
data.
Cutput Descriptions

DUMRA

= ‘ The ocutputs of the programs, DUMRA and DUMRRR,
Card are self-explanatory if one refers to following

No. - Information on Card definitions of guantities which appear on the
I printouts.

1 Initial time and time increment: <+ (ccl-16),

¢ DUMRA

at{ee 17-32).
WAO, WYO, WZ0 = initiasl values of the components of

2 ' Constants of the Motion: w, {cc 1-16), angular velocity in the Cxyz system,
w {ee 17-32) u_ (ee 33-48),% o (cc 49-6h),
Yo % ° PSIO = initial value of ¥ .
BH(cc 65-80}.
THTAH = BH.
3 Constants of the Motion: 'wH(cc 1-16)
PSIH = ¢H'-

X(ce bo-6lL), Xo(cc 65-807.
¥, YD, 2D = X, ¥, Z, respectively.

bk . Constants of the Motion: Y {ce 1-16),
o
.Zo(cc 17-132). X, ¥, 2 = Xo’ Yo, ZD’ ?espectively.
Coordinates of Points: :“:l(':c bg-6L), S8X, 8Y, 82 = x-, y- ard 2-coordinates, respectively,
yl(cc 65-8a), xe(cc 65-80) of the point indicated.
5 - Coordinates of Points: yE(cc 1-16), PHI = ¢ .
x3(cc 17-32], y3(cc 33-48). THETA = 6 .
6 . Physical Paremeters: alece-1-16), blce 17-32), Wos |ul

clee 33-48). (Semi-axes of ellipsoid)
W = angular velocity veleccity, W, The X - Y- and

DUMRRE, zs—components of w are listed under W.
Card = v v ;) s
. Vv = V_ - The components, X, ¥ and 7, are listed
No. Informaticn on Card ~0 under V.
1 Jodtiel Ting and Time Increment: (B¢ 1-16) o = R(t,), the vector R at time, 1C + DT. The
¢ compenents of 5 are listed under RO,
2 Estimated Values of: EH(CC 1-16), X SR1, SR2, SR3 = the components of Tys s and T3,
BH(cc 17-33), wlec 33-48), Xo(cc 49-6L), respectively, 1n a coordinate system
Yo(cc 65-80) , rotated with respect to the Cxyz system
. soc that ¢ = 0 at time, TC + DT, and
3 Estimated Values of: Zo(cc 1-16), X{ee 17-32}, translated so that Z% = 0 are printed
Y(ee 33-48), Z{ec 49-6l), xl{cc 65-80) | underneath these symbBols.
L Estimated Value of: yl(cc 1-16)
1 - 17-32 actusl- i
5 Actual Values of mxo(cc 1-16}, Nyo(cc 7-32), The errors, uactizilmated, in the values for
0 (cc 33-4B), 4,0(@ 4964, BH(CC 65-80) the components of E(te}, 1+ Tp» Ty and Vo computed

o

iz



using simulated values as true values, are printed
also under the headings DRO, DSR 1, DSR 2, DSR 3,
and DVO, respectively. OSimilar errors in the
components of P, ie and I, are also given under
the headings DR%OT 1, DRDDT 2 and DRDOT 3, re-
spectively. It should be noted that when 0.99% DO3
is printed this does not indicate a 99,900 percent
error, but is an indication that the actual value
and the calculated values are both zero.

- DUMRRR

The output of DUMRER includes the values of the
constants of the motion and the other data needed
for the simulation of the motion in the same out-
put format as that used in DUMRA. Additicnal out-
put includes the estimated values of the constants
of the motion and the coordinstes of Py, the
times, T, at which data is taken, the vector C
formed from the actual and estimated observations,
the estimated values of the constants PSIH, THETAH,
Wi (WE cn printout),ﬁo, v, end x; and y; and the

matrix, DX, of changes in the constants.

13



DUMRA Preogram Listing

IMPLICIT REAL%B(A-H,0-1)
NN=1
READ(5,1)TC,DT
1 FORMATI2F16.0)

0O 120 I1=1,100
NC=1
CALL DUMRA{TC,DT,NC,NN)
TC=TL+0T

100 CONTINUE
sToP
END

SUBRDUTINE DUMRA(TI»DT,NC NN}
IMPLICIT REAL*B8{A~H,0~-1)
DIMENSION VS5{3,1)sR0OS1341}25RRS(3,3),RDOTS{3,3),0S5R{3+3
+JDVI3,31}3DRO(341)DROOTI3,43)
DIMENSION RLU343)»5RL{341)45R213,1)+5RI{3,11,RO0T(3,3}
DIMENSTON WI(3),5RI{3,3),RHO(3),RHOD{3),R2{3,3}
ODIMENSION R3(3,3),DRL{3,3)+DR2L3Iy3I+RODUTII43)4W{3,41)
DIMENSION DELRLU(341)sH{3,3),0ELRDL{3,1),DELRD213,41)
DIMENSION ATAP(3,+3),ATH(3,3)sDELT(3431,:VCVIA4L) V{3, 1)
DIMENSION WT{3:3)14RD{3,1) ,V2{341}4RO13,1}:+5R(3,3)
DIMENSION SRILT(3,1),5R12{3,1),5RI3(3,1)
DIMENSION ATAPT{3,3),A3(3,3),A3T(3,3},5R1T3{3,1)
DIMENSION A3TL{3,3),A3T3(3,3),0ATI(3,3),DDR1(3,:1L)
DIMENSION E(3,31,AT313,3),ATL{3,3)+X1(3)
DIMENSION DRIL{3,1),D2R1{3,1}
DIMENSTION SR11{3.1}
DIMENSION SSR{343),4VS1(3,1),R0O51(3,1)
OIMENSION ABI(3,1),BC(3,3)}
DO 210 1=1,3
00 209 J=1,3
R1I([+J1=0.000Q
R2(1+4)=0.0D0C
209 R3(1,4)=0.000
v2il,1)=0.000
210 vil.11=0.000
C
C OBTAIN DATA
C
CALL STATE{RL,SRSRI+RDOT WI+DPSI oT1sT NC,IV]IS,RHO,+RHOD
21 TTT,PPP,NN, V5L ,R0S51,55R)
CALL VISIB{IVIS)
PRINT 947,T
T2=T1+D7
NC=3
CALL STVATE(RZsSR+SRIYRDOT+WIsDPSTI T2 ToNC,IVISsRHG,RHOD
et TTT,PPP NNy ¥S1,R0OS51,S55R)
CQ 116 I[=1.,3
VS501,10=V51(i,1)
ROStI,1)=ROSL(1,1)
DO 116 4=1.3
SRRS{I.3)=55R{1,4)
L1& RDOTS(T,J3¥=RDOTI{I[,d4)
PRINT 200,0TT,T2
200 FORMAT(/,5Xs"'DT = "y Fl2.6,10%,'T = ", Fl2.6,10X,'T2 = ¢,
aFl2.647)
CALL VISIB{IVIS)
PRINT 310,0PS1
T3=T1+2,.0%DT

1h



g47
310

[aN ekl

101

10

[N aRel

11

15

SO0

543

544

27
28

22

CALL STATEIR3;SR05R]|RDDT|H1|DPS|nT3|T|NC.[V[SuRH01RHOD
ws TTTPPP NN, ¥S1RG51.55R)}

CALL VISIBLIVIS)

PRINT 947,7T

FORMAT(S5Xy*T=*,D16.8:+/1}

FORMAT(10X,'PST = ',020.8+/7)

FIND RDOT AT TIME T2

pD0 101 I=1,3

D0 131 J=1.3

DR1(1,J1=0.0

DR2{Iyd4)=0.0

RDOT{I+J1=0.0

DO 10 J=1.3

DO 10 1=1,3

DRI(I yJI={R2(I4J}-RLIL,J}}/OT
DR2(E+JI=IR3(1,I)-R2(E,J))/DT

RDOTC 1. J1={DR1{ [, J)+DR2(I+J)}/2.0D0

FIND W

[FIDT.GT.100.0)G0 TO 543

Do L1 1=1.3

DELR1(I[+1)=0.000

DELRDL(141)=0.000
DELRD2([,1)=0.0D0
DELRL(I,1)=R2(I,+2)-R21I,41}
DELRDL(I,1)=RODT(I,2)1-RDOT(I,1]
DELRD2{I,11=RDOT{I,3}-ROOT(I,2)
DOTP=0.000

VCV{I4+1)=0.000

XI(I)=DELRD2(1,41}

CALL TILDE{XI.DELT)

CALL MATMUL(DELT,DELRD1+VCVs343+1)
CALL DOTPRO{(DELRDZ,DELRLDOTP)

00 15 [=1,3

Wilzl¥=¥CV(1,1)/DOTP

WS=Wlls LI EW{ Ly LI +W(24 11 %W(2, 1) +N{3sLI*MH(3,1}

FORM APSI AND ATH

WH=DSQRT(HW5)

PRINT S444WH

FORMAT( /45X, "WHW = *+D20.8+/}
DSI=0SIN(WWEDT)
DCO=DCOS{WW*DT}
CTH=HI(3,1) /WW
STH=DSQRT{1.000-CTH*CTH)
TH=DATAN(STH/CTH}
DTH=TH*180.0/3.14159
IF(W(2,1).LT.1.0E-6}G0 TO 27
PSIH=DATANZ(W{2+1)sW{ls1)}
GO TO 28

PS5IH=0.0
PSIHD=PSIH®180.0/3.1415%92
CP=DCAS(PSIH)
SP=DSIN(PSIH}

DO 22 I=1.,3

DD 22 J=1l.3

ATH(1,4)=0.0DC
Hil.+31=0.000
ATH(2,2)=1.000
ATH(1,1)=CTH

ATH{1,3)=—5TH

ATH{3+1)=5TH

ATHI3,3)=CTH

H(3,3)=1.00D0

Hil,s1)=CP

H{Ls2)=5P

H{Z,1)==5P

H{2,21=CP

CALL MATMUL(ATH,H,ATAP,3,3,31
00 120 [=1,3
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DO 120 J=1,3
A3(EJ)=0.0
120 ATAPT(I.JI=ATAP(Jy1)

c FORM A3T1 AND A23T2
c

DO 30 I=1.3

PO 30 J=1+3

E{l,J1=0.000
A3TL(L,J)=0.000
30 A3T3(1,4)=0.000
A3T1(1,13=DCO
A3T3(1,1)=DCD
A3T1(1,2)=0D51
A3T3(1,2)1=-D51
A3T1(2,1)=-DSI
A3T3(2,1)=051
A3ITL(2+2)=DCO
A3T3(2,2)=0C0
A3T1(3,3)=1.0D0
A3T3(3,3)=1.000
DO 31 I=1,3
DDR1(1+11=0.000
D2R1(I,11=0.000
31 E(I.1)=1.000

FORM ATL AND AT3

[zEaKal

CALL MATHULIATAPT,A3TL,AT1+3,3,3)
CALL MATMUL(ATAPT,A3T3,AT3,3,3,3)

FORM D
D=2.0D0*DCO-2.000

FORM DDR1

OO0 o000

00 33 I=1,3 ’
33 DDR1CIZL}I=RA(I,1)-2.0D00%R21I,1)+R1E1,1]

FIND 3RI

B alel

CALL MATMUL(ATAP,DDR1+D2R1+343,1)
SR1(3,1)=0.000
SR1{1,1)=D2R1(%,1)/D
SR1{2,1)=02R112.1)/0

FIND RO

[aEelkel

CALL MATMUL(ATAPT,SR1,SRILs3,3,1)
DO 35 1=1,3
35 ROtIL1)=RZIL,1)-SRIL{1.,1)

FIND ¥

aod

CALL MATMUL(ATL,SR1+5R11,34+3,1)
00 34 I=1,3
34 VII,1)=(-R1(T4+11+RO{I,1)+5RLL{L,1))/DT

FIND SRZ2 AND S5R3

IR aEal

DO 36 1=1,3
SRIZITI,11=R2(1,2)=-RD(I,1)
36 SRII{IS1I=R2(T1,3)-RO{1,1)}
CALL MATMUL(ATAP,SRTIZ2,5R2:343,41)
CALL MATMUL(ATAP,SRI3,35R34343411}
150 FORMAT(3(2X,6D20.8,/1)}
PRINT 114
114 FORMATILZX " WP LTX o "V ol TXs ROy 19X "SR 17X, *SR2',17X
«+'SR3%, /)
PRINT LS50, {Wilel)eVII sl )4RO{I+1L)«SRLIT1I4SR21T41) SR
alellslI=1,43)
DO 121 [=1,3
DVII,1)=999.0
DROI{I[+11=999.0
16



DO 121 J=1.3
DSR{I+J)=999.0
121 ORDOT(I[,J}=999.0
00 115 I=1,3
[FIDABSI{VS(1s1))4LT.1L.0D~121G0O TO 117
DV 1Y=(V(I,1)=-VSUI1})/V5L1.1)
117 1F(DABS(ROS{I,1)}.LT.1.00-121G0 ¥O 118
DRO(Iy1)=(RO(L,1)-ROSUIs1I)I/ROS{I,1)
118 iF(DABS(SRRSII,11).LT.1.00-12}G0 TO 119
DSROI+EI)=¢{SRL{L,1)-SRRSC(I,1))/SRRSU1,1}
119 IFIDABSISRRS(1,2))1.LT.1.0D-12IG0 TO 122
USR{I.21=1{SR2{1,1)-5SRR5(1,2)1)/ SRRS(1,2}
122 [FIDABSISRRS(L,3)).LT.1,00-120G0 TO 123
DSRIIZII=C(SRICL1I-SRRS(I,3)/SRRE(I+3)
123 CONTINUE
00 115 J=1.3
[E(DABSIRDOTS(I,J)).LT.1.00-12)G0 TO 115
DRDOTAI,J)={RDOTII,J)-ROOTSI1,4)}/RDOTSLIsd)
115 CONYINUE
PRINT SO
PRINT L10+(DROCIs1}{DSRULIsS)oJ=1y3),1=21,3}
PRINT 51
PRINT llO.lDVilyll.lDRDDTlI'Jl.J=l.3l.I=1.31
110 FORMATISX,4020.8,/)
50 FORMATI(Z/,14X,°DRO" 16X, *DSR 1*,15X,*DSR 21,15X,*DSR 3°*
s /)
S1 FORMAT(//+16X,"DV* 416X, 'ORDOT 1*,13X,*0ORDOOT 2%,13%,
«"ORDOT 3*./)
RETURN
END

SUBROUTINE STATE(RR;SRR,SRRI,RDOT WL +DPSIsTCsT2¢NC,IVIS
..RHD,RHUD;DTHETA|UPHI.NN.V|QO|SSR|
IMPLICIT REAL*8(A~-H,0-11)
DIMENSTION RDOT(3,3)RR{3,:3)4SRR13,3),S5RRI(343)4WEL3}
DIMENSTION VI3),CROI3),APHI{3,3) ATHETA(3,3},AP51(3,3),
1APSTH(3:3),A0{3,3)sA51343),A6(3+3)+CRI3),5R(3,1)
DIMENSION A3T{3¢3)sR{A,1)sRAI3,1),SRP(3,1):5RPI{3,1])
CIMENSION IVI3),AT{3:¢3) JATHTAHI3,3),SRI(3,L}+WBI(3)
DIMENSION RHOI3}),RHOD(3)
DIMENSION D(3,3),E(3)
DIMENSION WBT(3,3),WXSRA(3,3),RDD{3,3)+sRD2(3,3}
DIMENSION RO(3:41)455R(3:+3)
DIMENSION SSRAL3+3),A6T7(3,3])
DIMENSION AB(3,11,8C(3,3)
OIMENSION X1(3),WD(3),WDT{3,3),WDXSRR13,3),5RRA(3,+1)
EQUIVALENCE(THETAH, THTAHK)
Ivil)=5
iviz2i=3
ivildi=1
K3=0
I1=0
IFINC.NE.1) GD TO 6
CALL DATA(WXOsWYODsWZOPSI0:THTAHPSIH,V+CRO+5RR+5A95B,5
«CeNN)
WY0=.00005
THETAH=30.0
PS1H=30.0
WRITE(6,999)5A,358,5C
G99 FORMAT{TXs'SAT" yFLl6.BeTX s *SB= 3 FLlO.BTX'SC="4Flb.8,//1}
SAS5=5A%5A
SBS=SBR*58
S{5=5C*5(
A=15B5+5CS}
B=(545+5C5)
C={SA5+5BS)
SIGX = A/C
SIGY = B/C
DO 920 I=1,2 17



320 5RR(3'I)=SC¢DSQRT{loOOO'SRR(l'[l**ZISQS—SRR(Zil)‘*2/565
.}
PRINT 47yWXDsWYD4W20,PSI0,THTAH,PSIH
47 FORH&T‘TK,'HXU=';E16.8.6X"HYO='.E16-B-6!;.HZU*'|516-30
.II.?X.'PS[G='.E16.8.SX,'THTAH='.Elb.B.hX.‘PS[H='.El&.8.
Y24
PRINT 4B.V{1)4V(2),V(3)+CROLL1I+CRO(2),CROLA}
48 FORNAT{TX,'XD='.E1605|7X"YD=',E[6.3,7K:'ZD='|516.B'f/'
.TK.'K='.E16.8.BX.'Y='.E16.8'8X,'l='.E16.8.IIl
DO 910 [=1,3
910 PREINT 49, 1,S5RR{1,{},SRR(2,1},5RR{3,1}
45 FORMAT(TX,*POINT "3I)eaX e 'SX="yELO.By T,y "SY="4E16.8,:TX,
«V52=1,E1H6.8,/7)
PI=3.14159265
PSID=PSID*PI/180.0
THTAH=THTAH®*P[ /180.0
PSIH=PSIHXP] /1B0Q.0
WlP = WXO/WZ0

WeP = WYD/WIO

W3p = 1.,0000000000C
PSIP = PSIO

$I62 = L.00000000

TP=oS5%(SIGX*W]IPE* 245 [GYSWIP* 424 WIP RS 2)
HP=(SIGX* 2% WP &x 245 GY XN UW2P* %2+ AP S2 ) 35,5
SK{ (L 2.%TP-HPe#2 1% | SIGY-SIGX) } A{{HPRE2-2 ¢SIGX*TP)*(].
«—S5IGY1})&%.5
CALL OCELI1{RES,SK.IER}
XLAMP={ (HP&x2-2 *SIGX*TPI*IL.~SIGY)/{SIGXRSIGYIi®e 5
Al=(SIGY*(1.,-SIGY}/ISIGX®(1.-SIGX)))#%,5
A2=(SIGX*(1.-S5IGX}/(SIGY®{1.-5IGY)))I*%,5
AJ={{SIGXESIGY I ** 5% (SIGY-SIGXI)/1{1.-SIGX)*{1l.-5IGY}}®
«%,5
ROW=( (HP®#2-2 ,¢SIGX*TP)I/{1.~-SIGX)Ien_§
DELTA={SIGY*®{SIGY~SIGXI/(1L.=SIGX) ) ®{W2P*%2/R0OW*Z)
WRITE(6+3}A14A24+A3,ROW,DELTA

3 FORMAT{L1X,5{2X,012.5]))
TAUP=0.0
T=0.0
DTAU=0.0001%RES/XLAMP
WRITE(6,545) TP HP,RES+SIGX,SIGY,SIG2
WRITE{G,546)5K, XLAMP

545 FORMAT(6(3X,D12.5))
5646 FORMAT(2(3X,D1245)47)

DO S I = 1,3
DO 5 J = 1.3
ATHETALL,4) = 0.0000000
APSItLsJ} = 0.00000
ATHTAH(I.J) = 0.0
APSIHIIJ4) = 0.00000

5 APHI{1,J4) = 0.00000

ATHTAHI1,s1} = DCOS{THTAH)
ATHTAH{1,3) = ~DSIN(THTAH)
ATHTAH(2,2} = 1.0000000

ATHTAH{3,3) ATHTAH{1,1)
ATHTAH{3,:1) =~ATHTAH{1,3}
APSIH{1l,1) = DCOS(PSIH)
APSIH(142) = DSIN{PSIH)

APSIH (2,2) = APSIH{1,1)
APSTH(24,1) ==APSIHILl,2)
APSIHI(3,3) = 1.00000000
CALL MATMUL{ATHTAH,APSIH,A0,3,3,3)
6 IFIY.GT.TCIGO TO 901
Ivis=1 :
12=0
T = TAUP/WIO
SCK=].—-5K%%2
IF(SK.LT.1.00-05)K3=2
IF{K3.EQ.2)TAUP=TCxWZ0
[FIK3.EQ.2)T=TC
- ARG=XLAMP*TAUP
CALL DJELFISNsCN,DN,;ARG+5CK}
WX={WLP*CN-AL*( WIP/ROW)*W2P5SN#DN) /(1. -DELTA®SN®R2)
WY={WZPXCNEDON+A2* (W3IP/ROW)2HIP*SN) /(1. ~DELTASSNE®R?)
WI={WIPXDN-AIXWLP*[W2P F/ROWIF*SNOCN) /(1 .~DELTA®SN®®R2)
CT=DSQRTIHPEHP-SIGX&S{GX=HXEWX ) /HP
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ST==SIGX*WX/HP
SP=SIGY*WY/(HP*LT)
CP=SIGI*WZ/HPRLT)

SPST=5P%5T

CP3T=CP#5T
PSIP=PSIP+HP*{SIGY-1.)*5P*5P30TAU
PSI=PSIP+HP*TAUP

THETA = DATANZIST,CT)

PHL = DATANZ2(SP.CP)

CCT=CT3CP
SCT=0D50RT(i.0D0~CCT*LLT)
CTHETA=DATANZ{(SCT,CCT)
DCTHET=CTHETA*1B0.0D0/3.141592
OPHI=PHI*180.00000/3.14159
OTHETA = THETA*180.0000000/3.14159
OPSI = PSI*180.000000/3.14159
00 222 1 = 143

00 222 J = 1,3

APHIIT,J} = 0.000

ATHETALL.J) = 0.000
[FIK3.1LT.2)60 TO 222

CT=1.0D0
$T=0.000
CpP=1.0D0
$P=0.0D0

222 APSIUI+J} = 0.000
APHI(1,1} = 1.0000000
APHIULZ2,2) = CP
APHILZ2,3) = SP
APHI(3,+2) = =-5P
APHI(3,3}) = CP
ATHETAlLls1l) = CT
ATHETA[Ll.3) = =57
ATHETA(2,2) = 1.0000000
ATHETAL3,3) = (7
ATHETA{3,41) = ST
APSItls1) = DCOSIPSI)
APSIL1+2) = DSINIPSI)
APSI(241) = = APSI(1,2]
APSI(242) = APST(L,1)
APSI(343) = 1.000

CALL MATMUL(ATHETA,APSI+A5,343,3)
CALL MATMUL{APHI+AS4AG,34343)
CALL MATMUL LAG,AD»AT»343,43)
DO 33 1 = 1,3
DO 33 J = l.3
33 A3T(L,J) = AT{44])
DO 949 KK=1,3
DO 950 I=143
950 SRII,1)=SRR{I.+KK)}
CALL MATMULIA3ITsSReSRIp 343411}
DO 10 I = 1.3
CRIT) = Vw{1)&T + CRO(I)
10 RiI,1)=CRULI*+S5RIII,1)
CALL MATMUL (AT+RsRA,3,3;1)
RHOL1=DS50RTIR(141)*R(Ls1)+R(2:1I*R(24,1)+R1{3,1)%R1{3,11])
RHO{KK)=RHO1
XLA=RA(1,1)/RHO1
XMA=RA{2,1)/RHO1
ANA=RA(3,1)/RH0L
AL=XLA®XLA/SASH+XMA®XMA/SBS+XNAEXNA/SCS
Ba=[A4—XLA*XLA/SASI®SR{1, 1) -XMARXLA/SBS*SRI2, 1)-XNA*XLA
«/SC5=SRI13,1)
SHPI1,11=2.00000%84/A4-SR(1,1)
SRPUZs1)=({XMA/XLA)®*(SRPIL1+1)-SRILs1)0+5R12,41)
SRP{3I,1) = {XNA/XLA)S{SRPIL,1)- SR{L,1))+5R13,1}
CALL MATMUL {A3T,SRPsSRPIL+343,1)
RHOZ=DSORT({CRELI+SRPI(L, L) )*%2+{CR(2)+SRPI(2,1) )} %#524{(
JRIZVIHSRPILAL L) I *2)
IFIRHDZ24LT.RHOL) IVIS=IVIS+IVIKK)
50 CONTINUE
948 CONTINUE
DO 949 [J=1.+3
RRULJ4KKI=RI{TJs1)
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949 SRRY(IJ,KKI=SRI([Js1)

WX*WI0

WYSWZD

Wl®Wz0
WB(L)=WX
WB{Z2)=WY
WB(3)=WZ
XI(L)={5C5-5SBS}/A
XI{2}={SA5-5C5) /8B
X[{3)={585-SA5)/C
WOCLYI=WB(2}+WB(3}xXIL1)
WO(Z2)=WB(3)eWB{Ll}*X[12)
WO(3}=WwB(Ll]IewWB(2)xXI(3)
00 908 J=1,3
00 908 [=1,3

G008 ROOTH1,J)i=vV{1)+A3T{L.1)%(~WB(3)*SRR{2,JI+WB(2)8SRR{3,J)
W BPABTHI R 2V % (WBL{3)#S5RR{L,JI-WBI1)*SRR(3,J))I+AAT(E,31%|-NW
BIZ2)VESRRILLJI+WB{L)I#SRR(2:4))
DO 899 J=1,3

899 RHOD{JI=(RR{1+J)*ROOT(L4J)+RRIZ,JI*RDOT(2,J)4RR (3, J)*RD
SOT13,4) ) /RH0OLY)
DD 909 I=1,3

SO9 WICLI=WXXAAT( Lo ) oWYHAATIL2)¢WZ¥A3T ({43}

930 CONTINUE

109 TAUP = TAUP + DTAU
T=TAUP/WZO
Il=t
T2=T
IF(K3,EQ.216G0 TO 901

110 CONTINUE
GO T0O 6

901 CALL TILDE(WB,WBT)
[F{Y.GT.TCIT=(TAUP-DTAU) /W20
CALL MATMUL{WBT,SRR,WXSRA:343,3)
CALL MATMULIWBT ,WXSRA4ROD,343,31)
CALL ODTPRO{WB,WB¢WW)
[FIK3.EQ.2)G0 TQO 699
00 6CG1 1=1,3
SSRAT1,1)=SRR(I,1)

601 RO{[-1)=CRITI«AITII,,3)*SRR(3,1)
CALL TILDE(WD.WDT)
CALL MATMUL{WDT,SRR,WDX5RR,343,3I
D0 606 I=1,3
D0 606 J=1.+2

&06 ROD(IJ)=ROD(]1,4)+WDXSRR{Y+J}
GO TD 71l

699 CONTINUE
DO 700 I=1,2

TOO SSRACI1)=-ROO(I+1) /MWW
SSRA(3,1)=0.0D0
ROD(3,21=RDD(3+21-RDD(3,1)
ROD(3+3)=RDD{3,3)=~RODI3,41)
RDD(3,1)=0.0D0
CALL MATMUL(A3T,RDDsRDZ,32,3,3)
0D 703 I=l.3

TO3 ROCL,LI=RAR{IT2)1I4RD2(E4 1)/ WH

T1ll CONTINUE
DO 702 J=1,3
PO T02 1=1.3

T02 A&6T(IJ1=AG1 U4 1)
DO 705 I=1,3
DO 705 J=2,3

TO5 SSRACL,J)=SRRIL,J)}
SSRA(3,2)=5RR{3,2)~SRRI(3,1}
SSRA(343)=5RR{3,3)-SRRI(3,1)
CALL MATMULU(AGTS5S5RA,S55R,3,3,+3)
PRINT 112+0PHI+DTHETA,DCTHET

112 FORMATISX s 'PHI="4D16.8,5X, "THETA="4D16.,B,5X,'DCAPTHETA=
VD168 /)

911 CONTINUE
RETURN
END

x
=
W h
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SUBROUTINE DATA({WlyW2,W3,PSIOLsTHTAH]1,P5IHLyY¥1+CR1+SRRL
e151e52+534NN}
IMPLICIYT REAL*8(A-H,0-2)
DIMENSION CRL{3)+Y1(3),5RR1(3,3)
DIMENSION WP(3),CROP(3},SRRP(3,3}
IFINN.GT.1}G0O TO 10
READLIS, 100 YWXOP 4 WYOP , WZOP ,PSIOP  THTAHP,PSIHP,VP (1} VP2
«Je¥PL3),CROPIL) ,CROP(2),CROPII) +SRRPIL1,1),5RRPL2Z2411+SRRP
e (132} 3SRRP{2:2),SRRP{14+3),SRRP({2,3)
100 FORMAT(5F16.0)
READ 101,S5AP,SBP,5CP
101 FORMATI3F16.0)
SRRP{3,1)=0.0D0
SRRPI13,21=0.000
SRRP13,31=0.000
NN=MNN+1
10 CONYINUE
S1=SAP
52=58P
53=5CP
PSIHL=PSINHP
PSIOL=PSICP
THTAHL=THTAHP
W1=WXOP
W2=WY]P
W3=WZ0P
DO 20 J=1.,3
CRL{J)=CROP(D)
vitJi=vP{Jg}
DO 20 [=1,3
SRR1{I+J1=5RRP{1,:J)
20 CONTINUE
RETURN
END

SUBROUTINE VISIB(IVIS)
IF{IVIS.NE.1) GO YO 19
PRINT 3
3 FORMATI(/7,6X,"ALL POINTS VISIBLE'./}
19 1F(IVI5S.LT.6}) GO YO 17
PRINT 6
& FORMATI/,6X,*POINT NUMBER 1 NOT VISIBLE',/}
IVIS=IViS-5
17 IF{IVIS.LT.4) GD TOD 7
PRINT 8
B FORMAT{/,6Xs "POINT NUMBER 2 NOT VISIBLE'./)
IVIS=IVIS-3
T IF{IVIS.LT.2) GO TO 9
PRINT 18
18 FORMAT(/,+6X,"POINT NUMBER 3 NOT VISIBLE',/)
9 CONTINUE
RETURN
END

SUBROUTINE DOTPRO(D,E.OQT)

IMPLICIT REAL*8{A~H,0-1}

DIMENSION D{3,114E(23+1)
DOT=D{Ll,1)%E(Ll,1}+D(2,L1®E{2,1)+D(3,1}*E{3,1)
RETURN

END
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SUBROUTINE MATMUL (A,:B4sC,oLoMeN)
IMPLICIT REAL®*B(A-H,D0-1}
DIMENSTION A(LyM) ,B{M,N),C{LsN}
00 L5 I=1.L
DD 15 K=1,N
TEMP=0.0
DO 14 J=1.M

14 TEMP=TEMP+A([,J)%BlJ,K)

15 CLL,KI=TEMP
RETURN
END

SUBROUTINE TILDEILE.D)
[MPLICIT REAL®*B(A-H,0-2}
DIMENSEON O(3,31,E(3)
DG 5 I=1.3

5 0{1,11=0.0
Dil,2i=-E(3])
Dl2,1)= E(})
Dik«3)= E(2)
D{3,1)=-E(2)

DtZ,31=—E(1)
Di3,21= £E()
RETURN

END

Listings of subroutines DJELF and DCEL 1 appear in the listing of program, DUMRRR.
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DUMRER Program Listing

IMPLICIT REAL*BiA-H,0-1}
DEMENSION BAL11411)eB(Lllell) ,H{2,110,RI03,41),02(2,14,R0O
el 3l ) VO(3,41,CRIB,1VeDX(L1,114WEIGHTIL1,4L)PRO{1L,1),
«AL33),C(11,010,ATE3,2}
NN=1
NM=0
READISy1)TC,.0T
1 FORMATI(Z2F16.0)
CHECK=1.0D0
T=TC
NC=1
ROEST=1.0DDS
N5T=]1.00-04
READ{S5+13)IPSIH, THETAH, WE+RO(L141)sRO{2,411
READISs13)RCI3 1)1 4VO{1e1)4V01241)4V0L{3I,1)+RL{1,12
READ(S5,13)R1{2,1)
13 FORMAT{5F16.0)
R1(2,1)1=0.0D0
PRINT 937,PSIHy THETAHWE RO (1e1}RO(2+1),R0(3,1},V0(141
ad e WOU2Z4L) V02, 1) 4R1I{LS1DRL(241)4R1(3,1)

937 FORMATI(GX, 'PSIH='4DL6.B+5X ) "THETAH="+D16+8,5Xs*WE=",D1b6
ea8p /25X, XO='4D16.815X%, 'Y0=.|016.BUSXI.ZD=. 2D16.84 745X,
«TXOD=*,D16.8,5X,'YOD="4D1L6.0,5X,"'200=*,015.847/95Xs"'X1="*
w1 D1lB.835X e "Y1 3016.8,5X,%21=",D16.8+/7/1}

2 CONTINUE
NM=NM+1
INM=NM/L10
PSIH=PSIH%*3.141592/180.0
THETAH=THETAH*3.141592/180.0
DO 30 K=lsb6
PSI=WE*T
PRINT 947,71
947 FORMATISX,'T="',D16.8,47/)
948 CONTINUE
CALL RHDESI(DZsToNCyPSIHs THETAH)WE+RO+VO4+R1+CRA,PS51,ROE
« yRORDDE SNNoNMy INM
DZ{LlsL)=D2(Ly1}/RDEST
DZ{2,L)=D2(2,1}/ROEST/ROEST/NST
CALL TRPOSE(A,AT,3,3}
TND=T&#WHST
DG 38 I=1,3
ROII+1)=RU{I+1)/ROEST
VOLT41)=VOILL,1)/ROEST/WST
38 R1t1+10=R1(0,1)/R0OEST
ROE=ROE/ROEST
WE=WE/WST
CALL DERIV(HoROsVOsRLoWEsPSIHy THETAH:ROEsPST» TNDsAT A}
IFIK.EQ.6)GD TO 33
pg 31 I=1,2
DO 31 J=Ll,11
BI2¥K=2¢1,4)=H14J)
31 CUZ%K—2+1,1)=D2(1,1}
T=T+0FT
00 39 1=1,3
RO[T+11=RO(L,1)*ROEST
VOILTo1¥=VO[141) *ROEST*WST
39 RL(I[+1)=RL(I,1V*ROEST
WE=WE *W5T '
30 CONTINULE
33 CONTINUE
DO 32 J=1,11
32 6{l14J)=HLL,J)
Clit,1)=DZ{1,1Y)
PRINT 9l9
919 FORMAT(LOX,'C MATRIX',/}
PRINT S51(CIT41)+1=04112
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51 FORMAT(11i5X,020.8,7171}
949 CONTINUE

DO & I=1l,11}
DO & J=1,11

4 BA(I+4)=B{L,4Jd)
CALL A37IMS(11.BA}
CALYL MATMUL{BA.C,0Xy1l1+11,1)
CF=0.02
IFICHECKLT.1.0D-4)ICF=0.1
IFICHECK LY. 1. 0D-61CF=1.0
00 5 [*l,3
RO(I,L)=RO(T,L)4DX{L+3,1)%CF

S VOUIs1)1aVOU(L,L1+DX{I+641)%CF
RI(LeyL)=RL{14L}+DX{10,1)*CF
RI(Z11=R102,1)+DX{11,+1)%CF
PSIH=PSIH+DX (1+)1)*CF
THETAH=THETAH+DX{ 24 1 )%2CF
WE=WE+DX{3,1)%CF
WE=WEXHWST
DO 40 1=1,3
ROC1+L3=RO(1,1L)*ROEST

40 VOUEL)=VULI, L) *ROESTEWST
R1(Ly1)=R101,41)*ROEST
R1{2,1)=R1(2,1) *ROEST
CHECK=0.00D0
Do 3% I=1,11

35 CHECK=C{I[,1)*C{1,1)+CHECK
CHECK=DSQRT{CHECK)
PSIH=PSIH*180.0/3.141592
THETAH=THETAH#*180,0/3.141592

PRINT 8,PSIHsTHETAH,WE,CHECK
8 FORMATILX,*PSIH=*4D20.8y4Xy '"THETAH=',D20.8,4X,"WE=1,02
w0eByp4Xs "CHECK=*4D20.8,//7)
PRINT 93 (RO{IyL)oVCITIe1)al=1,3}
3 FORMATOLSX, "RO" 423Xy "'WO' o/ +3(5X4D20.8+5%X:020.8471477}
PRINT 1Cs{(RY{Es1),1=1,2]}
13 FORMATULSX ,*R1* 4/ 42(5X4D20.8¢7)1477)
PRINT Lle{(DX{I413,1=1,11}
11 FORMAT(ZOX,*DX MATRIX'/+4{5Xe31D20.843X)4// )4/ /)
950 CONTINUE
IF(CHECK.LT.1.0D=071G0 TO 111
T=T¢C
NC=2
GO 70 2
111 5T0P
END

SUBROUTINE DERIVIH:ROVOsR1+WE4PSIH, THETAH,ROE,PSI, T, AT

sr A}

IMPLICIT REAL*8{A-H,0~-2)

DIMENSION Al343),AT(343)sHIZ2411),RO(3,1),V0(3,1)

DIMENSION RL{3,1),4D01(3,1)+,D02(3,1),D3(3,1}4D4¢1,3)

DIMENSION D5{1:3)406(Ls3)43CI3,1)1yRLTIL431,ROTIL,43}

DIMENSTION RI3,11,G631{3,1),V0Tl1,3)

DIMENSION DIOU3,+3),WET{3,3),G11(1,1)

AA=RL(L,L)*DCODSIPSI)-RL1Z,1}*DSEIN{PST)

BB=Ritl1,1)*DSINI{PSI}I+RL{2, L 1+DLOSIPSI)

DO 6 [=1.3

RILol}=RO{I41)4+VOLI10%T

Di(l,1)=0.0

D211,11=0.0
& D3{1,1}1=0.0

Ol{l,1)=1.0

D212,11=1.0

D33, L=L.0

CALL TRPOSE(RLI4R1T,3,1)

CALL TRPOSE{R,ROT,3,1}

CaLl TRPOSE{VO,VOT4+3,.1)

Cllyl)}=~AA*DCOSI{THETAH)=2DSIN(PSIH}-BB*DCOS{PSIH)
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Cl241)2AA%DCOSITHETAH)I*DCOSIPSIH)-BB*DSINIPSIH)
CLl3,1)=0.0

CALL MATMULIROTCoGEllels3,1)
H{l:1)=G1111,1)/ROE
Cil,11=—AARDCOS(PSIH)*DSIN(THETAH}
ClZ2el)=—AA*DSIN(PSIHI*DSIN(ITHETAH)
C(341)=-A8%DCAS{THETAH)

CALL MATMUL{ROTCsGllele3, el

Hil42)=G1l1¢1l,1)/ROE
Clly1)=-BB*DCOS(PSIH}I*DCOS(THETAH)-AA*DSIN(PSIH)
Cl2s1)=-BB*DSIN(PSIHI*OCOS(THETAH)}+AA*DCOSIPSIH)
Cl3,1)=-BB*DSIN(THETAH)

CALL MATMULIROT4CeGllels341)
H{ls3}=Gl1{1,1)*T/ROE

CALL MATMUL(ALDL,G31+3,3,1)

CALL MATHMULIRIT G314Gllely3,41)
HlLly24)={R{1s13+GLL(141))/ROE

CALY MATMUL(A,D2,G314+3,43,11

CALL MATMULIRLT,G31,G1l1l,s1,3,11
Hily5)1=(R{2,1)+Gl1(1s%))/ROE

CALL MATMUL{A,D3,631,43,3,1)

CALL MATMULIRIT,G31+Gllsl341)
Hil+61=(R13,1)+G1l1(1,1))/R0E

Hile7T)=T%HI1 s %}

HIiLsB)=T#*H(L, 5}

Hil+9)=T*H(1,

CALL MATMULTA, Dl|531 3:3,1)

CALL MATMUL(ROT:G31l+Gl1lels341}
HlL1410)=(GlLltE,1)+R1EL, 1)) /ROE

CALL MATMULI{A,D2yG31,3.3,1)

CALL MATMULIROTG3L,Glisle3,1}
Hi{lyl1)=(G11{1, 1) +R1(2,1}))/R0OE
Cliel)=—AA®DCOS{THETAH)®*DSINIPSIHI-BB*DCOS(PSIH}
Cl2yL)=AASDCOSITHETAH)*DCOS(PSIHI-BB&OS IN{PSIH)
Ci3,11=0.0

CALL MATMULIVOT,LsGllsle3,1)

Hi2,1)=G1l1{1,1)
Clle1)=RBEDSINIPSIH}*DCOS(THETAH)I-AA=DCOS(PSIH)
ClZy1}=-88¢DCOS{PSIHISOCOSITHETAH)-AA*DSIN{PSIH}
Ci341)=0.0

CALL MATMULI(ROT,C+Gllyele3,1}
H{Z2y1)sH{2, 1} +WEXGLL(141)
CilsL)=—AARDCOS(PSIH)*0SIN(THETAH)
ClZ2+L1==AA%DSINIPSIHI*DSIN(THETAH])
Ci3s11=-AA=DCOS{THETAHI

CALL MATMULIVOT,L Glly1,s3,41)

H|212’=Gll(111)
CD=DCOS{PSI}*WE#RY(2,L)+DSINI(PSI)*WE*RL1{1,1)
ClL,11=DCOS(PSIH}*DSINITHETAHI*CD
ClZeL}=DSIN(PSIH)*DSIN{THETAHYI*CD
CU3,1)=DCOSITHETAHI*CD

CALL MATMULCROT,C4611sL1,341)
H{2:2)=H(2,2)+G11(1,1)

C{ls1)=-RL(2,1)

C(E.ll=Rl(l.l)

Clarpl)=0.0

CALL MATMUL{AT:CyG31,3,3+1)

CALL MAVYMULIROT,G3LsGlls1+3,1)

H(2+3)=0G11{1.1)

Clly L}=-BBF0COS{PSIHI*DCOSITHETAH)-AA*DSIN(PSIH}
C{Zy1)=—BB*DSIN{PSIH}*DCOS{THETAH) +AA*DCOSIPSIH)
C(3,1)=-068%DSINITHETAH}

CALL MATMULIVOT,CsGllsls3,11}
H{243)=H{2,3)+T=GLL(1, 1L}
Cilel)=—AA¥DCOS{PSIH)I*DCAS{THETAH)+BB2DSINIPSIH}
C(ZeLl)=~AALDSINIPSIHI*DCOS(THETAH}-BB*DCOSIPSIH}
Ci3,11=-2A%DSIN(THETAH)

CALL MATMUL(ROTCo+Gllele3,1)
H|2|31=H‘2|3|’Gll(1|1)vT*HE

CALL TRPOSEIDL,D4s3411)

CatL TRPUSEIDZ2,D5,341)

CALL TRPOSE(DI,DEL3,])

00 12 [=1,3

DO 12 J=1.,3

25



12 WETLIL»J1=0.0
WET(L,2)=-WE
WET(24L)=WE
CALL MATMUL(WET R1,G3143,3,1}
CALL MATMULIAT,G3L+G314343,1)
CALL MATMULI(D44+G314Gll41,3,1)
H{2:s%)1=v0(1,134G1l1{1,1)
CALL MATMUL{DS,G31,Gils14341)
H{2,5)=v0(2Z,1)+GLl1(1.1}
CALL MATMUL{D&,G31,GlLlels3,1}
HIZ46)=V0{3I,1)+GIEILL1)
CALL MATMULC(AT,R1+631+3+3,1)}
CALL MATMULI(DG,G31+sGl141+3,1°
HL2,7)=ROTI{1l,1)+G1li{1,1)
CALL MATMULI(DS,G314Gllsls3,1)
Hl2,8)=ROTI11,2)+611{1,1}
CALL MATMULI(D&,G31,G1l+14+3,1)
HEZ2391=ROT{(1,3)+G11(1,11}
CALL MATMULIWET,DL1+G31¢343,1)
CALL MATMULUtAT,G31,631,3,3,1}
CALL MATMULIRDT,G314Gllsls3,1}
HI24101=G11t1,+1)
CALL MATMULIAT, D1l+G31+343,1)
CALL MATMUL{VOT.G314G1llels3,1)
H{2,10¥=H(2,1014GL1(1.1)
CALL MATMUL{WET,D2:631+343,1)
CALL MATMUL{AT,G31:G31,3+3,41)
CALL MATMULIROY,G314G1lsl43,1)
HI24111=GlLl(1l.,1)
CALL MATMULIATD2+G31434+3,1)
CALL MATMULIVOT.G3LsGilele3i}
H{2411)=H(2,11)+6GLL(L,1}
RETURN
END

SUBROUTINE RHDES{DZeT¢NCyPSIHsTHETAHsWE+RO+YO,RL4CRy AP
«SIyROE (RORCDE ¢NNpNM,y [NM)

IMPLICIT REAL#*B8{A-H,0-1}

DIMENSION RR{3,3)},5RR{343),SARI{3,+3),RDOT{3,3),W1{3},
«RHO{3),RHOD(3)4RO(341)4RLE3,1)+CAL3,1)4V0(3,1),
CWET{34314A(3,31,ATI13,2),6311(3,1}

DIMENSION DZ(2,1)4632(3,15,V11(3,1)

DIMENSTON R({341),V(3,1)

CALL STATE{RR¢SRRsSRRIROOT,W1,DPST+T,T2,NC+EVIS+RHORH
«0Ds DTHETADPHI yO0Dy FFF o NN NM, INM)

NC=2

00 12 1I=1,3
G3ifl,11=0.0

12 CR{LyLI=ROCE1)+VO(I,1)%T

All+1)=0COSIPSI)*DCOSLTHETAH}*®OCOS{PSIH)~ DS[N(PSII*DSIN
APSIH]
A(L,y21=DCOS{PSIV*DCOSITHETAH)}®DSINI{PSIHI+DSINIPST)*0COS
«(PSIH}

A{l,y3)==~DCOS{PSI)I*DSIN{THETAH)

A{2,1)==DSIN(PST}*OCAOSITHETAR)*DCOS{PSIH)-DCOS(PSII*DSIN
J{PSIH)

AL2,2)=—DSIN(PSL)*DCOSI{THETAR)*DSIN(PSIH) +0COS(PSI ) *DCOS
LAPSIH)

A(2,3Y=DSINIPSI}*0SIN{THETAH)

A{3,1)=05IN{THETAH) #*DCOS{PSIH)
Al3,2)=DS5INITHETAH)*DSIN(PSIH)

Al3,3)=DLOS(THETAH)

CALL TRPOSELAAT,343)

CALL MATMUL(AT,R1,G31,3,3,1)

DO 17 I=1:+3

17 R(1411=CRUI,L)+G3L{T,1)

CALL UDTPRO(R.R4ROES)

ROE=DSQRT(ROES!

DO 15 1=21.3
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DA 15 J=1,3

G32(1411=0.000

ViI11.1)=0.000

WET[1+J)=0.000

WET{1ls2)=-WE

WET(Z,1)=WE

CALL MATMULIWET ,R1,G63243,3,1)
CALL MATMUL(AT,G324¥1143¢3,11}
D0 18 I=1,3

VIl 1)=V0(lsL)4+VII{TI 1)

CALL DOTPRO(R,V,RORODE)
0Z(1ls1)=RHO(]1)}-ROE
D2{2+1)=RHAD(1)*RHOL1)~-RORODE
RHDDE=RORODE/ROE

RETURN

END

SUBRDUTINE DCELLIRES.AK,[ER}
SUBROUTINE DCELL

PURPOSE
CALCULATE COMPLETE ELLIPTIC
OF THE FIRST KIND

DESCRIPTION OF PARAMETERS

RES -RESULT VALUE [N DOUBLE PRECISION

[INTEGRALS

AK -MODULLUS (INPUT) (N DOUBLE PRECISION

IER ~RESULTANT ERARDR CDDE WHERE

LER=0 NO ERRQR

leR=1 AK NOT IN RANGE =1 TO +}
DOUBLE PRECISION RES.+AR,GEO.ARIAARI

[ER=3

ARI=2.00
GEO=1{0.5D0-AK 1+3.5D0
GEO=GEO+GEO®AK
RES=0.500
IF{GEQ) L2404
TER=1
RES=1.075
RETURN
GEO=GEO*AARI
GEO=USORTIGEQ}
GEQ=GED+GEQ
AARL=AR]
ARI=AR]+GEQ
RES=RES+RES

[F{GEO/AARI-0,.999939995D0)3,5,:5
RES=RESFARI*6.28318530T71795865D0

RETUAN
END

SUBRUUTINE DJELFISN,CN+DNsX4SCK)

DIMENSION ARI{L2).GEDL12)
SUBRUUTINE DJELF

PRECISTION
PRECISION
PRECISION

PURPOSE

COMPUTES THE THREE JACDBIAN ELLIPTIC FUNCTIONS
SH.CNyDN.
DESCRIPTION OF PARAMETERS

SN - RESULT VALUE SN(X) IN DOUBLE

CN - RESULT VALUE CNUX) IN DOUBLE

(4] - RESULT VALUE DN{X) IN DOUBLE

X -~ DOUBLE PRECISION ARGUMENT OF
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ELLIPTIC FUNCTIONS
SCK = SQUARE OF COMPLEMENTARY MODULUS I[N DOUBLE
PRECISION

EVALUATION

CALCULATION IS DONE USING THE PROCESS OF
THE ARITHMETIC GEOMETRIC MEAN TOGETHER WITH GAUSS
DESCENDING TRANSFORMATION BEFORE INVERSION DFf THE
INTEGRAL TAKES PLACE.

DOUBLE PRECISION SNyCNyeDNeXsSCKART ¢GEO+CMYAB4CD
TEST MODULUS

CM=5CK

Y=X

IF(SCK}2,14+4

D=DEXPIX)

A=1,00/D

B=A+D

CN=2.00/8

DN=CN

A={D-A)/2.D0D

SN=A®CN

DEGENERATE CASE SCK=0 GIVES RESULTS

CN X = ON X = L/COSH X
SN X = TANH X

RETURN

JACOBIS MODULUS TRANSFORMATION

D=1.D0-5CK
CM==SCK/D

U=DSQRY (D)

Y=D&X

A=1.D0

DN=1.D0

DO 6 I=1,12

t=I

ARI{I)=A

CM=DSGRTICM)

GEOII)=CM

C=(A+CM)#5.D0
IF(DABS{A-CM)I=1.0-9%A) 74745
CHM=ASCM

A=C

START BACKWARD RECURSION

Y=C®Y
SN=DSEN(Y)
CN=DCOSLY)
IFI{SN)IB,L13,8
A=CN/ SN

C=A%C

Dng 9 [=1,L
K=l=1+1

B=ARI (K)

A=C®A

C=UN*(
DN={GEQ{XK)+A) /[ R+A)
A=C/d
A=1.D0/D5QRT(C*C+1.00}
{FUSNDLIs11e11
SN==4A

60 TU 12

SN=A

CN=C%5N
[F{SCKI 144242
A=DN

DN=CN

CN=A
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SN=SN/D
RETURN
END

SUBRDUTINE A3TIMSIN,A)
IMPLICIY REAL®8{A-H,0-2]}
250 FORMAT{1HO,20HMATRIX A IS5 SINGULAR)}
OIMENSION A{LL+LileBOLL),C0100,IXIMAX{LL) »IXJMAXLLL)
DIMENSION ICHK(LLl)4JCHKEL1L)4Di11le1L)
ISING=0
MC=N
DO 132 J=L,N
ICHK(JY=0
132 JCHK({J)=0
145 DO 420 [XA=)1,N
AMAX=0.0000
DO 160 1=1,N
[FUICHK{T}11464146,160
146 DO 158 J=1,N
IFLJCHECJY ) 14T, 147,158
147 IF(AMAX-DABS(A(T,3)1)150,158,158
150 AMAX=DABS{A{L,J)}
1MAX=1
JMAX =]
158 CONTVINUE
160 CONTINUE
ICHK({ [MaX)=1
JOHK ( JMAX] =)
[XIMAX{IXA)=TMAX
JXJMAXTIXA)=JMAX
IFLAMAX~-1.0E-30)240,290,290
2460 WRITE(6,250)
[SING=1
stTae
290 DuM=A{IMAX,JMAX)
DO 310 Jd=1.N
IFIJCHK{J) 1304%,304,310
A04 ALIMAX,J)=ALIMAX,J)/DUM
310 CONTINUE
00 380 I=1,N
TF{1-1MAX) 320,380,320
320 DD 340 J=1,N
TF{JCHK (D) )330,330,340
330 alledi=Alisdl-atllsdMAXI*ALIMAK, D)
340 CONTINUE
380 COUNTINUE
420 CONTILINUE
DU 430 J=1,N
JT=JXJMAX D)
DO 430 |.=1'N
430 Dilydb=a{l,JT)
U0 440 1=1.N
0D 440 J=1,N
440 A(l149)=0.0
DO 450 I=1.N
450 Atl,0i1=1.0
DO 560 IXA=1,N
DO 452 I=1+N
452 B{[)=D(1,1XA)
IMAX=TXIMAX{]IXA)
JMAX=JUXJMAX(IXA}
DD 460 Jd=14N
460 A(IMAX,J)=ALLIMAX,J)/BLIMAX)
DD 558 [=1,N
IF{I-TMAX)I4TO,558,470
470 DO 480 J=14N
4B ALl J)=ALL,J)-BlII*ALIMNAX,J}
554 CONTINUE
560 CUNTINUE
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DO 570 IXA=1.N
IMAX=TXIMAX(IXA)
JHAX=JXJMAX[ I XA}
IF{IMAX-JMAX) 56545704565
565 DO 566 J=1,N
DuUM=aIMAX,J})
AUIMAX,J)=ATJMAX, J)
566 A{JMAX,J)}=DUM
0D 569 [=IXA4N
[FUIXTIMAX(L}-JMAX)569:56T 4569
567 IXIHMAX{[)Y=1MAX
GO fU 570
563 CUNTINUE
ST0 CONTINUE
RETURN
END

SUBROUTINE TYRPOSE(AR¢N,MI
IMPLICIT REAL®*8(A-H,0-1}
DIMENSION AC1).R{1)
1R=0
DO 13 I=l.N
IJ=I-N
00 12 J=1,M
1J=1J*N
IR=1R#1
10 R{IRY=ALID)
RETURN
END

Listings of subroutines STATE, DOTPRO, TILDE, MATMUL and DATA appesr in the listing of program DUMRA.
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